

DSS-13 W-band Assessment

- Extended capability and optimized performance of radio astronomy
 W-band receiver staged at DSS-13
 - Implemented computer-controlled aperture load and load temperature readout for calibrated, total power, radiometric measurements
 - Developed phase-lock for first local oscillator stage (75 GHz) in the laboratory
 - Once implemented and verified at the telescope, DSS-13 will be W-band VLBI-ready
 - Optimized W-band package z-axis alignment by measuring focus curves
 - Optimized noise temperature contribution of LNAs by bias adjustment of first and second amplifier stages to achieve design goal of T_{RCVR} = 65 K
 - Estimated contributions from the atmosphere and the antenna to zenith system temperature from tip curve and receiver temperature measurements:

```
T_{RCVR} = 65 \text{ K}
T_{ATMOS} = 16 \text{ K}
T_{ANTENNA} = 40 \text{ K}
T_{SYS} = T_{RCVR} + T_{ATMOS} + T_{ANTENNA} = 121 \text{ K}
```


DSS-13 W-band Assessment

Estimated preliminary blind-pointing capability

- Heuristic quadratic fit "poor man's" systematic error model
- Residuals about fit < 2 mdeg
- Repeatability needs to be verified
- Result should improve with respect to real systematic error model

DSS-13 W-band Assessment

Measured preliminary aperture efficiency

- Measured efficiency still increasing with elevation angle
- Peak efficiency still to be determined
- Expected symmetry, rolloff about rigging angle, still to be determined
- Extrapolation from curve fit suggests

Peak aperture efficiency = 18%

JPL

DSS-13 W-band Assessment

Developed design control table - predicted performance with current surface figures:

Element	Label	Efficiency(%)	Mirror RMS(Inches)
 Main reflector	 a	0.4183	0.0102
Subreflector	b	0.8110	0.050
Feed Support Blockage	С	0.8746	Quadripod
	E1 = primary surfa	ace contribut	ion = axbxc = 0.2967
Mirror 1, BWG	d	0.9529	0.0024
Mirror 2, SOLID	е	0.9670	0.0020
Mirror 3, BWG	f	0.9274	0.0030
Mirror 4, SOLID	g	0.9732	0.0018
	E2 = intermediate	mirror contri	bution = $d x e x f x g = 0.8317$
Mirror 5, BWG(Ellipsoid)	h	0.9274	0.0030
Mirror 6, SOLID	i	0.9274	0.0030
	E3 = pedestal mirr	or contributi	on = $h x i = 0.8601$
Feed efficiency at F3	-		
Non-diplexed I^2R Loss	j	0.9600	
Path 1 VSWR	k	0.9900	
	E4 = microwave s	ubsystem co	ntribution = j x k = 0.9504
	Predicted aperture	e efficiency a	t F3 = E1 x E2 x E3 x E4 = .2017 ~ <u>20%</u>

 To be a world-class W-band antenna for VLBI, the DSN operational BWG subnet would need to achieve an aperture efficiency of 35%. Surface figures that would meet that goal:

```
E1 = .4455 = 0.55 x 0.90 x 0.90 = main x subreflector x support blockage

E2 = .9224 = (.98)^4, four reflecting surfaces

E3 = .9025 = (.95)^2, two reflecting surfaces

E4 = .9801 = (.99)^2, two elements

Aperture efficiency achieved at F3 = E1 x E2 x E3 x E4 = 0.3635
```

L. Teitelbaum, M. Seiffert

Ground Antenna Systems FY01 Q2 Scorecard

DSS-13 W-band Assessment

- Receiver Development
- Phase-lock receiver first LO stage
 - •Implemented and tested in the laboratory, to be verified at DSS-13 (Q3)
- Implement calibration capability utilizing an ambient load and noise diode
 - Load implemented and routinely operational
 - Noise diode approach still TBD and to be implemented (Q3)
 - Optimize noise temperature contribution of LNAs by bias adjustment
 - Pointing and Efficiency
 - Measure aperture efficiency
 - Assess antenna blind-pointing performance using point sources
 - •Initial measurements with planetary targets; point source detections next (Q3)
 - Developed initial design control table
- Telecommunications link margin study
 - Slipped due to short-term workforce prioritization putting out fires (Q3)

Ground Antenna Systems FY01 Q3 Planned Accomplishments

DSS-13 W-band Assessment

- Receiver Development
 - Complete phase stabilization of the W-band receiver
 - Implement W-band appropriate, computer-controlled, noise injection technique to complete radiometric calibration capability
- Pointing and Efficiency
 - Measure aperture efficiency as a function of azimuth and elevation
 - Determine systematic error model based on point source observations
 - Assess blind-pointing performance with respect to systematic error model
 - Study the repeatability of 2 mdeg pointing precision
 - Apply raster scan technique at DSS-13 and obtain preliminary results at X- and Ku-bands
 - Assess capability of DSS-13 antenna servo system to support precise W-band tracking
- Telecommunications
 - Perform updated W-band link margin study